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Distributed Coordination of Multi-Agent Systems
With Quantized-Observer Based Encoding-Decoding
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Abstract—Integrative design of communication mechanism and
coordinated control law is an interesting and important problem
for multi-agent networks. In this paper, we consider distributed
coordination of discrete-time second-order multi-agent systems
with partially measurable state and a limited communication data
rate. A quantized-observer based encoding-decoding scheme is
designed, which integrates the state observation with encoding/de-
coding. A distributed coordinated control law is proposed for
each agent which is given in terms of the states of its encoder
and decoders. It is shown that for a connected network, 2-bit
quantizers suffice for the exponential asymptotic synchronization
of the states of the agents. The selection of controller parameters
and the performance limit are discussed. It is shown that the alge-
braic connectivity and the spectral radius of the Laplacian matrix
of the communication graph play key roles in the closed-loop
performance. The spectral radius of the Laplacian matrix is
related to the selection of control gains, while the algebraic con-
nectivity is related to the spectral radius of the closed-loop state
matrix. Furthermore, it is shown that as the number of agents
increases, the asymptotic convergence rate can be approximated
as a function of the number of agents, the number of quantization
levels (communication data rate) and the ratio of the algebraic
connectivity to the spectral radius of the Laplacian matrix of the
communication graph.

Index Terms—Data rate, digital communication, distributed co-
ordination, encoding and decoding,multi-agent systems, quantized
observer.

I. INTRODUCTION

I N recent years, distributed cooperative control of multi-
agent systems has attracted unprecedented attention of the

control community ([1]–[14]) in view of its wide applications
in many emerging fields such as smart grids, intelligent trans-
portation, formation flight, etc. In particular, the problem of
multi-agent consensus has been the focus of many researches;
see, e.g., [5] and the reference therein.
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Quantized consensus is an important problem due to that
digital communications are widely adopted and has attracted
recurring interest ([15]–[24]). Kashyap et al. ([15]) developed
an average-consensus algorithm with integer-valued states,
which can ensure the asymptotic convergence of agents’ states
to an integer approximation of the average of the initial states.
They gave an upper bound for the expected convergence time
for fully connected networks and linear networks. Frasca et al.
([19]), Carli et al. ([20]), and Li et al. ([24]) considered the av-
erage-consensus problem with real-valued states and quantized
communications. In [19] and [20], static uniform quantizers
and dynamic logarithmic quantizers with an infinite number of
quantization levels were considered, respectively. In [20] and
[24], average-consensus algorithms with dynamic finite-level
uniform quantizers were proposed. Especially, in [24], it is
shown that if the network is connected, then the control param-
eters can be properly chosen such that the average-consensus
can be achieved with an exponential convergence rate by
using a single-bit quantizer. The work of [24] was extended
to the cases with link failures in [25] and time-delay in [26],
respectively.
The aforementioned works are concerned with the first-order

integrator systemswithmeasurable states. In many applications,
however, we encounter higher order systems with partially mea-
surable states. Dynamic output feedback control of multi-agent
systems of general higher order dynamics was first studied by
Fax and Murray ([3]). Tuna proposed a controller design algo-
rithm for synchronization of discrete-time linear systems based
on static relative output feedback ([27]). Qu et al. ([28]) dealt
with static output feedback of multi-agent systems via feedback
linearization, where the control input of an agent is given in
terms of its own output and the relative output errors with re-
spect to its neighbors. Li et al. ([29]) and You and Xie ([30])
considered distributed coordination based on dynamic relative
output feedback. Hong et al. ([31]) developed a distributed ob-
server for leader-following systems where the leader and the
followers are described by second-order integrators and each
follower constructs a state observer based on the leader’s posi-
tion, neighbors’ positions and leader’s control input to estimate
the leader’s velocity. More literature on distributed observers
can be found in [32] and [33].
In this paper, we consider distributed coordination of

multi-agent networks based on digital communications. The
communications among agents are described by an undirected
graph. Each agent is described by a discrete-time second-order
integrator, with measurable position but unmeasurable velocity,
unlike [20] and [24]. Since the states of the agents are only
partially measurable, the encoding-decoding scheme in [24]
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can not be easily extended to this case. Further, unlike [20]
where infinite-level logarithmic quantizers are considered, we
aim to design an efficient encoding-decoding scheme under
a limited data rate for information exchange between agents.
Our first challenge is to jointly design state-observation and
encoding-decoding for communication and computation effi-
ciency while achieving consensus. Note that one natural idea
is to design a state-observer for each agent and then encode
and transmit the state-estimate to neighbors, which, however,
requires a distributed control with complex encoding-decoding
scheme in order to eliminate the effect of quantization and
estimation errors on the final closed-loop system. Further, even
such a control scheme can be developed to guarantee conver-
gence, the computation and communication loads are generally
higher and the performance (i.e., the convergence rate under
the same bit rate) is not definitely better.
From the perspective of minimizing communication bit rate

and reducing computation load, we propose an integrative ap-
proach for observer and encoder-decoder design in this paper.
At each time instant, the quantized innovation of each agent’s
position is sent to its neighbors, while, at each receiver, an ob-
server-based decoder is activated to obtain an estimate of the
sender’s position and velocity. Our design can result in a much
lower communication requirement due to: 1) the encoder inputs,
i.e., agents’ positions, contains less variables than the full states;
2) the encoder outputs are in fact a kind of quantized innova-
tions of agents’ positions and it is known that innovations gen-
erally can be quantized with much lower numbers of bits than
the positions themselves. It is worth pointing out that even if the
quantization is ignored, our encoders and decoders are different
from the dynamic feedback control law in [3]. Here, we do not
design a state observer for each agent separately, but send the
quantized innovation of each agent’s output directly and inte-
grate the state observation and communication process together.
Our observer-based encoding-decoding scheme is also different
from the distributed observer given in [31], especially, we do not
require the knowledge of the other agents’ control inputs.
We develop a distributed coordinated control law by using

the states of the decoders and encoders, provide sufficient con-
ditions on the control gains and network topology for the ex-
istence of finite-level quantizers to ensure the closed-loop con-
vergence, and show that these conditions are also necessary in
some sense. We prove that, by selecting the number of quantiza-
tion levels (data rate) properly, the asymptotic synchronization
of the positions and velocities can be achieved. Furthermore, for
a connected network, we can always select the control gains,
such that 2-bit quantizers can guarantee the exponential conver-
gence of the closed-loop system and the convergence rate can
be predesigned.
It should be noted that compared with classical non-quan-

tized and centralized state observers, due to the nonlinearity of
the quantization and the coupling of all agents’ states, the con-
vergence of a given observer-based encoding-decoding scheme
depends on the control inputs of all agents and the closed-loop
dynamics of the whole network. Different from [24], the rela-
tionship between the estimation error and the quantization error
does not have a simple form if observer type is not properly se-
lected, and it is very difficult to get an explicit expression for the

relationship between the spectral radius of the closed-loop state
matrix and the eigenvalues of the graph Laplacian. All these
significantly complicate the closed-loop analysis and the con-
trol parameter selection. Also, different from [24], there is no
explicit relationship between the stability margin and the con-
trol gain, which makes the performance limit analysis difficult.
By using differential calculus and limit analysis, we give a linear
approximation of the spectral radius of the closed-loop state ma-
trix with respect to the control gain ratio and algebraic connec-
tivity of the communication graph, based on which, a relation-
ship between the performance limit and the parameters of the
network and system is revealed. We show that as the number of
agents increases to infinity, the asymptotic highest convergence
rate is when using a -level
quantizer, where is the ratio of the algebraic connectivity to
the spectral radius of the Laplacian matrix of the communica-
tion graph.
The remainder of this paper is organized as follows. In

Section II, we present the model of the network and agents, give
the structures of observer-based encoders, observer-based de-
coders and distributed coordinated control laws. In Section III,
we analyze the closed-loop system and give conditions on
the network topology, the control gains and the number of
quantization levels to ensure convergence. In Section IV, we
discuss the selection of the control gain ratio and show that 2-bit
quantizers can guarantee the convergence of the closed-loop
system by selecting the control gains properly. We also give an
explicit form of the asymptotic convergence rate. In Section V,
we draw some concluding remarks and propose future research
topics.
The following notation will be used throughout this paper:

denotes a column vector with all ones. denotes the identity
matrix with an appropriate size. For a given set , the number
of its elements is denoted by . For a given vector or matrix
, we denote its transpose by , its -norm by , its
Euclidean norm by , its spectral radius by , and its trace
by . For a given positive number , the natural logarithm,
the logarithm of with base 2, the maximum integer less than
or equal to , and the minimum integer greater than or equal to
are respectively denoted by , , and .

II. PROBLEM FORMULATION

A. Agent and Network Models

We consider distributed coordination of a network of agents
with the second-order dynamics:

(1)

where , , and are the position,
velocity and control input of the th agent, respectively. Here,

is the output of agent , that is, for agent , only its po-
sition is measurable. The agents communicate with each other
through a network whose topology is modeled as an undirected
graph , where the agents and the communication
channels between agents are represented by the node set and
the edge set , respectively. The weighted adjacency matrix of
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is denoted by . Note that is a sym-
metric matrix. An edge denoted by the pair represents a
communication channel from to and if and only
if . The neighborhood of the th agent is denoted by

. For any , , and
if and only if . Also, is called

the degree of , and is called the degree
of . The Laplacian matrix of is defined as , where

. The Laplacian matrix is a sym-
metric positive semi-definite matrix and its eigenvalues in an
ascending order are denoted by

, where is the spectral radius of and is
called the algebraic connectivity of ([34], [35]). A sequence of
edges is called a path from node
to node . The graph is called a connected graph if for any

, there is a path from to .

B. Observer-Based Encoding-Decoding

We consider digital communication channels with limited
channel capacity. At each time step, what each agent can send
to its neighbors is only a coded version of its current and past
measurements. Generally speaking, the encoder of the th agent
may take the following form:

(2)

where and are the output and input of the encoder,
respectively, is a Borel measurable function and is a quan-
tizer. Note that both the structure and parameters of and
may be time-varying and the encodermay have infinitememory.
In this paper, we propose a finite memory encoder of agent
as

(3)

where is an exponentially decaying scaling function to be
defined later. In the above, and are the internal states
of the encoder and is a finite-level uniform quantizer given
by

(4)

where is the number of quantization levels
of .
After is received by one of the th agent’s neighbors, say

agent , a decoder will be activated:

(5)

where and are the outputs of the decoder.

Remark 1: In the above, is a quantized innovation with
scaling. From the dynamic (1) of the th agent, we know that to
get estimates for and , following the standard observer
design, the decoder can be in the form

(6)

where and are the observer gains. It can be
easily verified that if and the quantizer is the
identity function, then (6) degenerates to the classical deadbeat
posterior state observer based on output . However, since

is not available for the neighbors of the th agent, we
adopt decoder (5) instead.
Remark 2: From (3) and (5), we have

(7)

We will show that and can be viewed as the estimates
for and , respectively. Denote

as the quantization error in encoder , as
the estimation error for and
as the estimation error for . By (3) and some direct
calculation, we get

(8)

and

(9)

It can be seen that if the quantization error is bounded,
then due to the vanishing of , the estimation errors
and will both converge to zero asymptotically as
. Note that here, for the velocity estimation, there is one step

delay.
Remark 3: The relationship among the estimation errors
, and the quantization error is not as

straightforward as in the first-order case ([24]). It will be
seen later that (8) and (9) will play an important role in the
closed-loop analysis. Observe that the estimation errors for
velocities depend on two steps of quantization errors, which,
as we can see later, leads to an additional bit required for the
quantizers as compared to the first-order case ([24]).
Remark 4: From the above, we can see that both the en-

coder (3) and the decoder (5) can be viewed as the state ob-
servers based on the output and the quantized innovation.
We call the encoder (3) an observer-based encoder and the de-
coder (5) an observer-based decoder. Though the velocity
is not measurable, the th agent and its neighbors can make
an estimate for the overall state by using an ob-
server-based encoder and an observer-based decoder. At each
time step, each agent only needs to send the quantized innova-
tion of its output to its neighbors, then the neighbors can use
observer-based decoders to get estimates for the state of the
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agent. However, generally speaking, there is no separation prin-
ciple for the encoder-decoder design and the control design.
Compared with classical non-quantized and centralized state
observers, due to the nonlinearity of the quantization and the
coupling of all agents’ states, the convergence of a given ob-
server-based encoding-decoding scheme depends on the control
inputs of all agents and the closed-loop dynamics of the whole
network, which significantly complicates the analysis as seen
below.

C. Distributed Control Law

In this paper, we aim at designing a distributed coordinated
control law based on quantized communications such that

(10)

We propose a distributed coordinated control law of the form

(11)

where and are the control gains.
From (3), (5) and (11), we can see that the control input of

each agent only depends on the state of its own encoder and
the states of the decoders associated with the channels from its
neighbors.
Remark 5: Since the states of agents are only partially mea-

surable, the encoding-decoding scheme in [24] where agents
of single integrator dynamics are considered cannot be easily
extended to this case. The challenge is to design state observers
and encoders-decoders jointly so that they can achieve con-
sensus with efficient communications and computation. One
natural idea is to design a state-observer for each agent and
then encode and transmit the state estimate to neighbors. For
example, we may adopt the following state-observer for the th
agent:

(12)

is then encoded and transmitted to the neigh-
bors of the th agent. However, since the control input
and estimation error are not available for
its neighbors, to eliminate the effect of quantization and estima-
tion errors on the final closed-loop system, we may need a more
complex encoding-decoding scheme and a control law than (3),
(5) and (11). Further, even if we can find such a scheme to guar-
antee convergence, the computation and communication loads
are higher and the performance (i.e., the convergence rate under
the same bit rate) is not definitely better. From the perspective of
bit rate constraint and reducing computation load, we propose
an integrative approach for the state-observer and encoder-de-
coder design.

III. CONVERGENCE ANALYSIS

This section is devoted to the convergence analysis of the
proposed distributed control law in the last section. To this end,
we introduce the following notation:

where . We also define the unitary matrix

(13)

where is the unit eigenvector of associated with , that
is, , , .
Under the protocol (3), (5) and (11), due to the quantization,

the closed-loop system is a nonlinear discontinuous system.
Generally speaking, the convergence analysis is difficult,
however, by using the estimation error expressions (8) and
(9), the closed-loop equation can be converted into a linear
equation with time-varying disturbances, whose homogeneous
part is just the closed-loop equation without quantization. Then
by properly selecting the number of quantization levels, the
quantizers can be kept unsaturated and the convergence of the
closed-loop system can be achieved.
We make the following assumptions.
A1) There are known positive constants , , , ,

such that , ,
, .

A2) The communication graph is connected.
A3) .
A4) .
The following lemma, whose proof can be found in Ap-

pendix, will be used in the analysis of the homogeneous part of
the closed-loop system.
Lemma 3.1: Let

(14)

Then,
i) , if and only if As-
sumptions (A2)–(A4) hold.

ii) Let

(15)
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If Assumptions (A3)–(A4) hold, then the eigenvalues
of are 0, , and

, where

(16)

In the above, the arguments , of and were
omitted, and , where .
From Lemma 3.1, we know that if Assumptions

(A2)–(A4) hold, then is diagonalizable. Let
, , be nonsingular matrices, such that

where

Denote ,
.

In the following, the dependence of , and on and
will be omitted when there is no confusion.
The following theorem gives sufficient conditions on the con-

trol gains and network topology for the existence of finite-level
quantizers to ensure the closed-loop convergence.
Theorem 3.1: Suppose Assumptions (A1)–(A4) hold. Let the

scaling function , where

(17)
and . If the numbers of quantization levels of
the quantizer , satisfy

(18)
and

(19)

where ,
then under the protocol (3), (5) and (11), the closed-loop system
satisfies

(20)

Furthermore, the convergence rate is given by

(21)

Proof: The proof can be divided into three steps. First,
we convert the closed-loop system into non-coupled
linear equations with nonlinear disturbances. The disturbances
are combinations of the estimation errors which are related to
the quantization errors as observed from by (8) and (9). Second,
we estimate the bound of the synchronization errors in terms
of the quantization errors and system and control parameters.
Finally, we prove the boundness of the quantization error by
properly choosing the control parameters and the number of
quantization levels, which will lead to the convergence of the
closed-loop system.
Step 1) From (7) and (11), it follows that

(22)

Substitute the control law above into the system (1), we have

Let , , where is defined
in (13). Denote the th components of and by
and , respectively. Then we have ,
and

(23)
Denote , then the
(23) can be rewritten as

(24)

where with
. It

is clear that to get (20), we only need to prove
, .
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Step 2) By (24), we have

(25)

Further, by (8) and (9), noting that , we have

Then it follows from (25) that

(26)

By the definition of , and , we get

(27)

Step 3) By LemmaA.2, we get . This
together with (26) gives , ,
which further implies (20). Then from ,
(26) and (27), we get (21).

Observe that the distributed control law in Theorem 3.1 re-
lies on , which requires each agent to know the graph and
may not be practical. This restriction is relaxed by the following
corollary.
Corollary 3.1: Suppose Assumptions (A1)–(A4) hold. Let

the scaling function , where

(28)

and . If the numbers of quantization levels of
the quantizer , satisfy

(29)

and

(30)

where then under the protocol (3), (5) and (11), the closed-loop
system satisfies

(31)

and the convergence rate is given by

(32)

Proof: Noting that and
, by Theorem 3.1, we get the conclusion of this

corollary.
Remark 6: From Theorem 3.1 and Corollary 3.1, we can see

that the convergence factor can be properly chosen to tune the
convergence rate of the closed-loop system. By Corollary 3.1,
we may select the control parameters by the following steps.
i) Choosing , such that Assumptions (A3)–(A4) hold. ii)
Choosing and then according to (28). iii) Choosing
the number of quantization levels according to (29) and (30).
Remark 7: Corollary 3.1 tells us that to select proper and

the number of quantization levels, we do not need to know ,
that is, the exact Laplacian matrix. Furthermore, Assumption
A4) holds if , so the selection of the con-
trol gains may not need the knowledge of . However, from
the definition of , we can see that the selection of
needs the knowledge of the eigenvalues of the Laplacian ma-
trix. Hence, we still need some global knowledge of the net-
work topology to select the control parameters. In the case when
the network topology can be predesigned, this is not a problem.
However, in some applications, the network topology may not
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be known to each agent, for example, under switching topolo-
gies due to changing environment. In this situation, the problem
of estimating the eigenvalues of the Laplacian matrix in a dis-
tributed manner becomes relevant. Franceschelli et al. ([36])
gave an algorithm to estimate the eigenvalues of a Laplacian
matrix by each agent using the fast Fourier transform. The com-
bination of the eigenvalue estimation algorithm with our pro-
posed distributed coordinate control algorithm is an interesting
future research topic.
Remark 8: From Lemma 3.1 and the proof of Theorem 3.1,

we can see that A2-A4) are necessary and sufficient for the sta-
bility of the homogeneous part of the closed-loop systems (24).
Since , we can see that a smaller degree,
which implies lower local connectivity, will instead give more
flexibility for selecting the control gains.
In the main theorem of [15] (Theorem 1 of [15]), the authors

proved that under their algorithm, as time goes on the states of
agents converge to a ball centered at the average of the initial
states with radius less than or equal to the quantization interval,
with probability 1. They also proved that there always exists a
finite time such that the states of the agents enter and stay
in the ball with a positive probability when . An upper
bound for the mathematical expectation of the convergence time
for fully connected networks and linear networks was also pro-
vided. In this paper, we focus on the case with real-valued states
and the asymptotic convergence to exact synchronization. The
algorithm given here can guarantee convergence to synchro-
nization with an arbitrary precision as time goes on. In the fol-
lowing, we will give an analysis on the convergence time for a
given precision for connected networks. For any given ,
denote and

, which are
respectively the convergence time for the positions and veloci-
ties of all the agents with precision .
Theorem 3.2: Suppose the conditions of Theorem 3.1 hold,

and . Then
under the protocol (3), (5) and (11), for sufficiently small ,
the convergence time for the position and velocity respectively
satisfies

(33)

where

Proof: The proof can be found in the Appendix.
Remark 9: Similar to Corollary 3.1, the constant

in Theorem 3.2 can be replaced by

Fig. 1. Curves of of Example 1.

, which gives us a

relationship between the upper bound of the convergence time
and the number of agents.

IV. PARAMETER DESIGN AND PERFORMANCE LIMIT ANALYSIS

In this section, we shall investigate controller parameter se-
lection and analyze the asymptotic consensus convergence rate.

A. Selecting the Control Gain Ratio

Selecting the control gains and is equivalent to selecting
a control gain ratio and the position control gain .
It is easily seen that Assumptions A3)-A4) hold if and only if

and . Further will max-
imize , which implies the largest stability
margin of the homogeneous part of the closed-loop system (24).
1) Example 1: We consider a 10-node network with

and . The curves of with
respect to with different control gain ratios are shown in
Fig. 1.
It can be seen that will go to 1 as or

, and first decreases and
then increases with respect to . The of the inflection point
of reaches its maximum when . Further, it
can be proved theoretically that when is sufficiently small,

is almost a linear, monotone decreasing function of
. We have the following result.
Lemma 4.1: If Assumptions A2)-A4) hold, then for any given

, we have

(34)

Proof: The proof can be found in Appendix.
For Example 1, the curves of and

with different are shown in Fig. 2.

B. Selecting the Control Parameters Under a Given
Communication Data Rate

In Theorem 3.1, we give a criterion for selecting the number
of quantization levels (communication data rate) under given
control gains and a convergence rate. In the following theorem,
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Fig. 2. Curves of and of Example 1 with
different , where the dot lines are for and the solid
lines are for .

we will consider how to select the control parameters under a
given communication data rate.
Theorem 4.1: Suppose Assumptions A1) and A2) hold. For

any given , , denote

(35)

Then,
i) is nonempty.
ii) If , , and the numbers of the
quantization levels of satisfy

(36)

then under the protocol given by (3), (5) and (11) with
, the closed-loop system satisfies

where is a constant satisfying

(37)

Proof: From Lemma 4.1, we have

(38)

which implies

From the aforementioned, noting that the ex-
ists, and (35), we have (i).
For any given integer and constant , if
, , (36) and (37) hold, then it is easily verified

that , Assumptions A3)-A4) and (18) hold.
Then noting that and

, we know that (17) and (19) also hold. By
Theorem 3.1, we get ii).
Remark 10: In [24], it is shown that for a connected network

with first-order agents, average-consensus can be achieved with
an exponential convergence rate based on merely 1-bit informa-
tion exchange between agents. Here, we prove that for the case
with second-order agents, 2-bit quantizers suffice for the expo-
nential asymptotic synchronization of agents’ states. Compared
with [24], from (A.2), we can see that the additional bit is used
to overcome the uncertainty in estimating the velocity of the
agent.
Remark 11: Compared with [24], the performance limit

analysis for the second order agents with partial measur-
able states is much more challenging. In [24], the spec-
tral radius of the closed-loop matrix has the simple form:

, where is the control gain. In this
paper, it is very difficult to get an explicit expression for the
relationship between the closed-loop spectral radius
and the eigenvalues of the Laplacian matrix. By differential
mean theorem and limit analysis, we develop Lemma 4.1 to
give a linear approximation of with respect to the
control gains and the algebraic connectivity. From (38), we can
see that Lemma 4.1 plays a vital role in establishing Theorem
4.1. Different from [24], there is also no explicit relationship
between the stability margin and the control gain
, which also poses a significant challenge in the asymptotic

convergence rate analysis as seen later in Section IV-C.
1) Example 2: We consider a network with 10 nodes and

weights, which means that , if , other-
wise, . The edges of the graph are randomly generated
according to , for any unordered pair .
Here, , . The initial states are
chosen as and , . The con-
trol gain and , which give

. The scaling factor is taken as
0.9998. According to Theorem 3.1, the 2-bit quantizer can be
used. The evolution of the states is shown in Fig. 3. It can be
seen that both the positions and the velocities of the agents are
asymptotically synchronized. Next, we set . In this
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Fig. 3. Trajectories of states of Example 2 with and .

Fig. 4. Trajectories of states of Example and .

case, the number of quantization levels is required to be at least
6, so we take . The evolution of the states is shown in
Fig. 4. We can see that the convergence becomes faster.

C. Asymptotic Convergence Rate

From Theorem 4.1, we can see that, for any given integer
, the control gains , and the convergence factor

can be selected properly to ensure convergence of the closed-
loop system under the communication data rate of
bits per step between agents. Since smaller will lead to faster
convergence, an interesting question is what is the infimum of
we can achieve under a given communication data rate. In the

following, we will answer this question for large scale networks.
Theorem 4.2: Suppose Assumption A2) holds. For any given

integer and constant , let be defined in
Theorem 4.1. Then

(39)

where , is a pos-
itive constant independent of .

Proof: The equality (39) is a direct corollary of the fol-
lowing lemmas.

Lemma 4.2: Suppose Assumption A2) holds. For any given
integer and constant , let be defined in
Theorem 4.1. Then

(40)

Lemma 4.3: Suppose Assumption A2) holds. For any given
integer , and constant , we have

(41)

The proofs of Lemmas 4.2 and 4.3 can be found in Appendix.
Remark 12: Theorem 4.2 tells us that, for a given communi-

cation data rate: bits per step, as the number of
agents increases to infinity, the highest asymptotic convergence
rate which we can achieve is . It can be
seen that the asymptotic convergence rate is closely related to
the communication data rate, the network synchronizability
and the scale of the network, which verifies again that the ratio
of algebraic connectivity to the spectral radius of graph Lapla-
cian is an important factor that determines the performance limit
of the whole network.
Remark 13: Carli et al. proposed dynamic encoding-de-

coding schemes for asymptotic average-consensus with uniform
and logarithmic quantizers respectively ([20]). Compared with
[20], the innovation of our paper is summarized as follows.
i) For dynamic uniform quantizers, [20] did not give the con-
vergence analysis of their proposed algorithm. For dynamic
logarithmic quantizers, [20] considered the infinite-level case.
In this paper, we consider dynamic finite-level uniform quan-
tizers and give a rigorous convergence analysis for our protocol.
We derive sufficient conditions on the network topology, the
control gains and communication data-rate to ensure asymptotic
synchronization, and prove that for a connected network, 2-bit
quantizers can guarantee the exponential convergence of the
closed-loop system. Our conditions on the network topology
and the control gains are also necessary for the stability of
the closed-loop matrix when there is no quantization. ii) We
give a rigorous performance analysis. It is shown that the
convergence rate of our control protocol is exponentially fast
and can be designed by selecting the convergence factor of
the scaling function. We also discuss the relationship between
the performance limit and the parameters of the network and
system, which link the highest asymptotic convergence rate
to the communication data rate, the network topology and the
scale of the network. iii) [20] considered the first-order system,
and in this paper, we consider second-order dynamics with
partially measurable states and propose an integrative approach
for observer and encoder-decoder co-design.

V. CONCLUDING REMARKS

In this paper, distributed coordination of discrete-time
second-order multi-agent systems over finite bandwidth digital
communication networks has been considered. The position of
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each agent is measurable, while the velocity is not. A quan-
tized-observer based encoding-decoding scheme was proposed,
which integrates the state observation with coding/decoding. A
distributed coordinated control law was given in terms of the
states of the encoders and decoders. It was proved that, for a
connected network, by properly selecting the control gains both
for the position and velocity, 2-bit quantizers can ensure the
asymptotic synchronization of the states of agents. The control
parameter selection and performance of the closed-loop system
were also discussed. It was shown that the second-smallest and
largest eigenvalues of the Laplacian matrix play important roles
in the closed-loop performance and the highest asymptotic
convergence rate can be described as a function of the number
of quantization levels, the number of agents and the ratio of
the second-smallest to the largest eigenvalues of the Laplacian
matrix.
In this paper, as a preliminary research, we assume that the

communication channels are noiseless and delay free. The case
with noisy channels, link failures and time-delay is an inter-
esting topic for future research. In some applications, the dy-
namics of agents can be described by high-order linear models,
how to design an encoding-decoding scheme and a coordinated
control law for general linear systems remains challenging.

APPENDIX

Lemma A.1: Let , and be positive constants. Then
the roots of polynomial
are all inside the unit circle if and only if i) and ii)

. Furthermore, if i) and ii) hold, then the polynomial
has a real nonzero root and one pair of conjugate complex roots.

Proof: By Jury criteria, the roots of
are all inside the unit circle if and only if

i.e., and .
Let and be given by (15) evaluated

at , then the roots of
are given by (16) evaluated at .
In the following, we prove that if i) and ii) hold, then

. Denote , and

Then we have and

Denote
. Next, we prove that

(A.1)

We consider this according to three situations.
I) , . In this case, we always have

, .

II) , ,
. In this case, it can be seen that the roots (or

root) of are (is) negative, then

from , we can see that

, .
III) , , .

In this case, it can be verified that

Then we have ,
. Thus we can conclude that (A.1) holds. Then

noting that , we get .
Since , from (16), we can see that is

real and and are conjugate complex. Then by i), it is easily
verified that .
Proof of Lemma 3.1: The characteristic equation of

, , is given by

By Assumption A2), we know that , .
Then by Assumptions A3)-A4) and Lemma A.1, we get the suf-
ficiency of i) and ii). The necessity of Assumption A2) in i) can
be easily verified by letting . Then by Lemma A.1,
the the necessity of Assumptions A3)-A4) is easily verified.
Lemma A.2: Suppose the conditions of Theorem 3.1 hold.

Then under the protocol (3), (5) and (11), the closed-loop system
satisfies .

Proof: From (3), (18) and A1), we have .
From (1), (8), (9) and (11), we have

Then by (18) and A1), noting that , we get
. From (1), (8), (9) and (22), we know that

(A.2)
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which implies that

(A.3)

and

(A.4)

From (A.3), (18), and A1), noting that and
, we have . Similarly, by

(A.4), (18) and A1), we have .
From (8) and (9), we have

(A.5)

From the definition of , noting that
, we have

(A.6)

Suppose that for any given integer , , then
at time , from (17), (26), (27), (A.2), (A.5), and (A.6), we
have

From the above and (19), we have . Then
by induction, we know that .

Proof of Theorem 3.2: From Theorem 3.1, (26), (A.5) and
(A.6), we have
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which together with (27) leads to

(A.7)

Similarly, we have

(A.8)

Note that for sufficiently small , we have
. This together with (A.7) and (A.8)

leads to (33).
Proof of Lemma 4.1: From (16), we get

and
, . So there exists

, such that

(A.9)

Denote
,

. Then by (A.9), we
have

(A.10)

Denote

(A.11)

Now we prove that

(A.12)

By some direct calculation, we have

(A.13)

where

From the above, we have

(A.14)

and similarly,

(A.15)

Combining (A.13), (A.14) and (A.15), we have (A.12).
From (A.10), (A.11) and (A.12), noting that , we know

that there exists , such that

(A.16)

From (A.10), noting that is continuously differen-
tiable with respect to on , then by the differential mean
value theorem, we get

This together with (A.12) and (A.16) leads to (34).
In the proof of Lemmas 4.2–4.3, for abbreviation, we denote

and by and , respectively .
Proof of Lemma 4.2: For any given integer , con-

stants and , denote
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First, we prove that there exists an integer , such that

(A.17)

For any given , from the definition of , it
can be seen that for any given , noting that

, we have

which together with Lemma 4.1 gives

(A.18)

From the above, noting that , we know
that, there exists an integer , such that

, , which together with
and the definition of

gives , . Then it is
easily verified that . Hence, we have
(A.17). Then by (A.17), (A.18) and Lemma 4.1 again, noting
that , and
, we have

which gives (40).
Proof of Lemma 4.3: For any given integer , con-

stants , , , and

, from Lemma 4.1, we know that there exists a con-
stant , such that

(A.19)

So there exists a positive integer , such
that

(A.20)

Denote

(A.21)

From (A.20), we know that

(A.22)

Denote

(A.23)

From (A.19) and (A.22), we have

(A.24)

and

which implies
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From the above and
, we have

which together with (A.22), (A.23) and (A.24) leads to
, . Then from (A.19), (A.21), (A.22),

and (A.23), we have

which implies

Let , and , and go to 0, then we have
(41).

REFERENCES
[1] A. Jadbabaie, J. Lin, and S. M. Morse, “Coordination of groups of

mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[2] R. Olfati-Saber and R. M. Murray, “Consensus problem in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[3] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp.
1465–1476, 2004.

[4] L.Moreau, “Stability ofmulti-agent systemswith dependent communi-
cation links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp. 169–182,
Feb. 2005.

[5] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Co-
operative Control. London, U.K.: Springer, 2008.

[6] R. Olfati-Saber, “Distributed kalman filtering and sensor fusion in
sensor networks,” Netw. Embedded Sens. Control, pp. 157–167, 2006.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[8] C. Yu, B. D. O. Anderson, S. Dasgupta, and B. Fidan, “Control of mini-
mally persistent formations in the plane,” SIAM J. Control Optim., vol.
48, no. 1, pp. 206–233, 2009.

[9] Z. Lin, B. Francis, and M. Maggiore, “State agreement for continuous-
time coupled nonlinear systems,” SIAM J. Control Optim., vol. 46, no.
1, pp. 288–307, 2008.

[10] M. Huang and J. H. Manton, “Coordination and consensus of net-
worked agents with noisy measurement: Stochastic algorithms and
asymptotic behavior,” SIAM J. Control Optim.: Spec. Iss. Control
Optim. Coop. Netw., vol. 48, no. 1, pp. 134–161, 2009.

[11] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment: A graphical approach,” SIAM
J. Control Optim., vol. 47, no. 2, pp. 575–600, 2008.

[12] T. Li and J. F. Zhang, “Mean square average consensus under measure-
ment noises and fixed topologies: Necessary and sufficient conditions,”
Automatica, vol. 45, no. 8, pp. 1929–1936, 2009.

[13] T. Li and J. F. Zhang, “Consensus conditions of multiagent systems
with time-varying topologies and stochastic communicaiton noises,”
IEEE Trans. Autom. Control, vol. 55, no. 9, pp. 2043–2057, Sep. 2010.

[14] D. Cruz et al., “Decentralized cooperative control: A multivehicle
platform for research in networked embedded systems,” IEEE Control
Syst. Mag., vol. 27, no. 3, pp. 58–78, Jun. 2007.

[15] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, no. 7, pp. 1192–1203, 2007.

[16] R. Carli and F. Bullo, “Quantized coordination algorithms for ren-
dezvous and deployment,” SIAM J. Control Optim., vol. 48, no. 3, pp.
1251–1274, 2009.

[17] R. Carli, F. Fagnani, P. Frasca, and S. Zampieri, “Gossip consensus
algorithms via quantized communication,” Automatica, vol. 46, no. 1,
pp. 70–80, 2010.

[18] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans.
Autom. Control, vol. 54, no. 11, pp. 2506–2517, Nov. 2009.

[19] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average consensus on
networkswith quantized communication,” Int. J. Nonlinear and Robust
Control, vol. 19, no. 16, pp. 1787–1816, 2009.

[20] R. Carli, F. Bullo, and S. Zampieri, “Quantized average consensus via
dynamic coding/decoding schemes,” Int. J. Nonlinear and Robust Con-
trol, vol. 20, no. 2, pp. 156–175, 2010.

[21] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks with imperfect communication: link failures and channel
noise,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 355–369, Jan.
2009.

[22] J. Lavaei and R. M. Murray, “On quantized consensus by means of
gossip algorithm-part I: Convergence proof,” in Proc. 2009 Amer. Con-
trol Conf., St. Louis, MO, Jun. 10–12, .2009, pp. 394–401.

[23] J. Lavaei and R. M. Murray, “On quantized consensus by means of
gossip algorithm-part ii: convergence time,” in Proc. 2009 Amer. Con-
trol Conf., St. Louis, MO, Jun. 10–12, 2009, pp. 394–401.

[24] T. Li, M. Fu, L. Xie, and J. F. Zhang, “Distributed consensus with
limited communication data rate,” IEEE Trans. Autom. Control, vol.
56, no. 2, pp. 279–292, Feb. 2011.

[25] T. Li and L. Xie, “Distributed consensus over digital networks with
limited bandwidth and time-varying topologies,” Automatica, vol. 47,
no. 9, pp. 2006–2015, 2011.

[26] S. Liu, T. Li, and L. Xie, “Distributed consensus for multi-agent sys-
tems with communication delays and limited data rate,” SIAM J. Con-
trol Optim., vol. 49, no. 2, pp. 2239–2262, 2011.

[27] S. E. Tuna, “Synchronizing linear systems via partial-state coupling,”
Automatica, vol. 44, no. 8, pp. 2179–2184, 2008.

[28] Z. H. Qu, J. Wang, and R. A. Hull, “Cooperative control of dynamical
systems with application to autonomous vehicles,” IEEE Trans. Autom.
Control, vol. 53, no. 4, pp. 894–910, Apr. 2008.

[29] Z. K. Li, Z. S. Duan, G. R. Chen, and L. Huang, “Consensus of multia-
gent systems and sychronization of complex networks: A unified view-
point,” IEEE Trans. Circuits Syst.-I: Reg. Papers, vol. 57, no. 1, pp.
213–224, 2010.

[30] K. You and L. Xie, “Coordination of discrete-time multi-agent systems
via relative output feedback,” Int. J. Robust Nonlinear Control, vol. 21,
no. 13, pp. 1587–1605, 2011.

[31] Y. G. Hong, G. R. Chen, and L. Bushnell, “Distributed observers
design for leader-following control of multi-agent networks,” Auto-
matica, vol. 44, no. 3, pp. 846–850, 2008.

[32] Y. G. Hong, J. P. Hu, and L. Gao, “Tracking control for multi-agent
consensus with an active leader and variable topology,” Automatica,
vol. 42, no. 7, pp. 1177–1182, 2006.

[33] Y. G. Hong and X. L. Wang, “Multi-agent tracking of a high-dimen-
sional active leader with switching topology,” J. Syst. Sci. Complexity,
vol. 22, no. 4, pp. 722–731, 2009.



LI AND XIE: DISTRIBUTED COORDINATION OF MULTI-AGENT SYSTEMS WITH QUANTIZED-OBSERVER BASED ENCODING-DECODING 3037

[34] M. F. Praha, “Algebraic connectivity of graphs,” Czechoslovak Math.
J. , vol. 23, no. 98, pp. 298–305, 1973.

[35] C. Godsil and G. Royle, Algebraic Graph Theory. New York:
Springer, 2001.

[36] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decen-
tralized laplacian eigenvalues estimation for networked multi-agent
systems,” in Proc. Joint 48th IEEE Conf. Decision Control and 28th
Chinese Control Conf., Shanghai, China, Dec. .2009, vol. 16–18, pp.
2717–2722.

Tao Li (M’09) was born in Tianjin, China, in
September, 1981. He received the B.S. degree in
automation from Nankai University, Tianjin, in
2004, and the Ph.D. degree in systems theory from
the Academy of Mathematics and Systems Science
(AMSS), Chinese Academy of Sciences (CAS),
Beijing, China, in 2009.
From 2008 to 2011, he held research positions in

Nanyang Technological University. From September
2010 to January 2011, he was a Visiting Fellow of
Australian National University. Since July 2009, he

has been a faculty member of AMSS, CAS, where now he is an Assistant Pro-
fessor. His current research interests include stochastic systems, networked con-
trol, multi-agent systems, and sensor networks.
Dr. Li was mentioned as one of the five finalists for the Young Author Prize of

the 17th IFACWorld Congress, 2008. He received the Special President Prize of
Chinese Academy of Sciences in 2009, the Best Paper Award of the 7th Asian
Control Conference with coauthors in 2009, the 2009 Singapore Millennium
Foundation Research Fellowship, and the 2010 Endeavour Research Fellow-
ship from Australian government. He is a member of the Youth Innovation Pro-
motion Association, CAS. He is currently an editorial board member of Mathe-
matical Problems in Engineering. Since 2010, he has been a program committee
member of Chinese Control Conference.

Lihua Xie (S’91–M’92–SM’97–F’07) received the
B.E. and M.E. degrees in electrical engineering from
Nanjing University of Science and Technology in
1983 and 1986, respectively, and the Ph.D. degree
in electrical engineering from the University of
Newcastle, Callaghan, Australia, in 1992.
He held teaching appointments in the Department

of Automatic Control, Nanjing University of Science
and Technology, from 1986 to 1989. Since 1992, he
has been with the School of Electrical and Electronic
Engineering, Nanyang Technological University,

Singapore, where he is currently a Professor and Head of Division of Control
and Instrumentation and Director, Centre for E-City. He was a Changjiang
Visiting Professor with South China University of Technology from 2006 to
2010. His research interests include robust control and estimation, networked
control systems, sensor networks, multi-agent systems, time delay systems
and control of hard disk drive systems. He is an editor of IET Book Series on
Control.
Dr. Xie has served as an Associate Editor of several journals including

the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Automatica, IEEE
TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS-II, and IET Proceedings on Control Theory and
Applications. He is a Fellow of the IFAC.


